Linux + ROCm: January 2026 Stable Configurations Update

for me today;

on a fedora43 clean toolbox run on a silverblue-43: (so have to be the same on a clean fedora-43 install=

sudo dnf install python3-torch python3-torchaudio python3-torchvision
# [...]
$ python3 -c 'import torch' 2> /dev/null && echo 'Success' || echo 'Failure'
Success
$ python3 -c 'import torch; print(torch.cuda.is_available())'
True

So not that bad. Did you have simple test to know if it really work?

Edit:

git clone https://github.com/pytorch/examples.git
cd examples/mnist
python3 main.py

# look to work:
Train Epoch: 14 [57600/60000 (96%)]	Loss: 0.027002
Train Epoch: 14 [58240/60000 (97%)]	Loss: 0.007073
Train Epoch: 14 [58880/60000 (98%)]	Loss: 0.015837
Train Epoch: 14 [59520/60000 (99%)]	Loss: 0.009342

Test set: Average loss: 0.0287, Accuracy: 9909/10000 (99%)

I’ll post a footnote, my Framework Desktop is working stably with:

Ubuntu 25.10 (add amd_iommu=off to get a 6% speedup source)

Kernel 6.17.7 (use the mainline ppa to install it)

Python 3.12 (use uv python install 3.12 and then use the python3.12 to do python3.12 -m venv yourdir)

Rocm 7.1 (when installing torch, torchvision, torchaudio wheels in the venv)

InvokeAI from pip (well, uv) - ok

ComfyUI from github - ok, no flash-attention 2

Python torch commands - ok

Lemonade - ok

llama.cpp - ok, I downloaded the latest build from Releases · ggml-org/llama.cpp · GitHub - find the Linux > Ubuntu > “Ubuntu x64 (Vulkan)” build