Introducing a new RISC-V Mainboard from DeepComputing

Yep, this is it!

14 Likes

Risc is a concept, Arm and Risc-V are two separate implementations.

Apples devices are Risc based, as they are using the proprietary ARM, but Risc-V is entirely open. It is, in fact, more open than X86-64 which is owned by Intel and AMD (Piecemeal with each but with cross-licensing). X86-64 is the architecture most computers use today

On X86-64 a manufacturer must get a license from these parties, which has lead to a duopoly in processors. Nobody else can use it without being granted a license.

Risc-V however is entirely open. Risc-v isn’t a nail, it’s a crowbar.

12 Likes

Gordon Freeman intensifies. Well said.

8 Likes

Every processor has a language it speaks. Programs (like chrome/firefox/whatever) when they are compiled from source code into executables, the compiler translates the code into the language the processor understands. The popular ones today are x86_64 which is used by almost every windows machine, Arm which is used by recent Apple computers and almost every cellphone, and Risc-V which is this motherboard.

The advantage of Risc-V is that it is open source. If you want to make an x86_64 processor then you need to be either AMD or Intel because they do not sell licenses to make x86_64 processors. If you want to make an Arm processor you need to pay Arm for a license. If you want to make a Risc-V processor, you can just do that because it is open source.

As an end user, you’re not going to see much of a benefit/difference, but personally I think the future is Risc-V because there is 1 fewer cost/hurdle to making a Risc-V processor.

I’d say the one particularly visible difference you’ll see as an end user is the Risc-V vector extensions were designed to be variable-length so instead of the situation we have on x86_64 where they release SSE1 then SSE2 then SSE3… then AVX512 and at each step, code compiled to use the newer extension won’t run on the older processors, with Risc-V the processor can have any size for its vector unit and programs will be able to make full use of it.

6 Likes

Awesome news! So excited for the possibilities. Not for this particular option, but rather that Chinese manufacturers would notice this platform and see that Framework is more than willing to cooperate. I am waiting for a “Raspberry PI” moment.

@nrp, I asked this before, but today is a good day to reiterate. I am wondering, would it be possible someday to order stripped down version of a laptop chassis without the mainboard? Factory seconds seem like a good start, but why would I need another mainboard to spare if I already have one?

Given that RISC-V board would always remain niche, I doubt that Framework would set up their production line for it. So, potential customers would need to buy everything needed part by part (which would probably be much more expensive) or to buy factory second with a mainboard they don’t need. Either of the options is not environmentally friendly.

The media articles and HackerNews about this topic which I could find are below. Congratulations and enjoy the articles!

9 Likes

FOSS is actually the community least likely to be fractured by this. Being open source, 99.9% of code can just be recompiled for any architecture you want. The only code that can’t be trivially recompiled for other architectures is assembly code. Its closed source code that fractures by CPU architecture (for example, most games being x86_64) which forces us into using compatibility layers like Rosetta.

I think you’re referring to the policy decision from Microsoft. Microsoft requires that Arm machines sold with Windows are sold with secureboot enabled and without the ability for the end-user to enroll their own keys. AFAIK this doesn’t apply to Risc-V because AFAIK there is no Risc-V release of Windows.

9 Likes

Huh, did you forget a 0 somewhere? Even their RC cars are more expensive.
image

I’m not sure what’s up here, but we see two totally different pages. Are you using USD?

4 Likes

That seems to be in HKD or the currency suggested for Belarus not USD, or CAD.

Sometimes this happens for me as I’m using a VPN with obfuscation so no worry. The computers are a bit pricey for their specs to be clear though, but nowhere near that lol.

Edit: after looking it seems like the price is fairly reasonable for the specs actually. Of course as Risc-V still doesn’t have the best support, and alot of work needs to be done to make it usable, it’s not going to perform nearly as well but I’m kinda suprised on price

3 Likes

Ohh ok. Yeah seems the default is HKD. Had to change to European shop, now it makes sense. That’s super confusing, they use the $ sign for both currencies.
image

No sale for EUR though :upside_down_face:

2 Likes

I suppose the demo of this mainboard at the RISC-V Summit Europe may happen at this session on Wednesday June 25th at Central European Time 08:00 in Munich.

Harnessing the Power of Collaboration Across Continents and Markets: A Panel Discussion

Yuning Liang, CEO, Deep Computing, Makeljana Shkurti, Growth Strategy & Ecosystem Relations at VRULL GmbH, Florian Wohlrab, CEO Open HW Group

Plenary on Wednesday June 25th at 08:00.

4 Likes

I’m so excited for this! I was looking at the Roma laptop for tinkering, but this might be even better. Tragically I have a FW 16, but maybe there will be a reasonably priced refurbished 13 I could pick up. I can’t wait to upgrade my 16 to a RISC-V board whenever my current one is too old. And I’m hopeful by that time the RISC-V offerings will be as performant or more than their x86 or ARM counterparts.

2 Likes

Wow, I never would have guessed we’d get RISC-V before ARM :joy: It’s a match made in heaven.
And it’s a 3rd party mainboard, that’s awesome! The framework is really acting like a “framework” for laptops now, mission accomplished.

Really looking forward to getting one of these in the future when they’ve progressed enough to be competitive, at least from a hardware standpoint.

9 Likes

This is beyond awesome. Knowing myself, I’m extremely likely to pick up one of these. From what I’m seeing (OpenBSD/riscv64) and some crossreferencing product categories and names, it sounds like this should work but there might be some firmware tweaking needed. I’m boldly assuming that a product like this isn’t going to lock us out of accessing/tweaking firmware. :smiley:

This looks like an awesome opportunity for me to both play with RISC-V for the first time and have a convenient platform to (one can dream ambitiously) simultaneously dip my toes deeper into contributing to my favorite OS.

2 Likes

This chip makes me think of having a Mini PC that has interchangeable parts, perhaps using the existing laptop parts since we would want a small size.

1 Like

I think this is very cool. For me, it’s going to hinge on price since my use case would be purely for tinkering. Here’s hoping it’s affordable, and if not maybe I’ll get a future iteration assuming RISC-V gains more traction as I suspect it will.

Being a FW16 owner, if I want one to mess around with, I’d need that Cooler Master case.

1 Like

I’m with you on this one. NFTs and crypto are pretty much only good for gambling and money laundering. I’ve been able to safely ignore any goofballs that push either without missing out on much.

1 Like

From the bottom of my heart, thank you framework! Thanks to all engineers that worked on this.

First, RISC-V is the architecture that will replace ARM and X86-64 in the long term future. For now, I understand that it’s only a dev board but you can already do so much with it! BSDs and Linux distros start to have great support for RISC-V and its only gonna get better. This means that with a gentoo well compiled, you should be mostly good right now, maybe except specific drivers for that CPU / wifi chip but nothing that can’t be fixed thanks to open source (hence why the dev board is coming!!!). It will tremendously help the dev community port the things that need to be here to that architecture that for me, really represents the future of computing. Open computing will open competition in the CPU market because the current duopolity starts to become uncompetitively tiring when both Intel and AMD release existing products with number bumps only (see ryzen 8000 or intel 14th gen, or even worse, lower IPC as per rumors on 15th gen). Competiton is needed. In the short term, x86 will stay relevant. It’s been there for decades, and porting non-open source software is VERY hard not to say next to impossible, and some people will just not switch if everything isn’t fully ready to work out of the box, especially big proprietary apps for professionals. In the mid term, ARM will win: it’s clear this year that ARM is big with apple having adopted it a while ago and microsoft following closely with qualcomm and the Snapdragon X Elite/Plus. We now know that the future is not x86, and that means that in the long term RISC-V will inevitably win, maybe only for cost-saving reasons to avoid licensing ARM or to avoid dealing with ARM itself and the downsides of more restrictive implementations (see the lawsuit qualcomm VS arm foundation), there are a thousand reasons to choose a more “open” implementation. (Ok, RISC-V still isn’t 100% open I believe but its way way way better than ARM and x86)

For now you are enabling devs to have a convenient, physically high-quality machine that’s been refined over 3 years with a drop-in replacement for their existing motherboards. That’s very good because today, you can only find low-quality RISC-V laptops, with a flimsy chassis, unrepairable hinges (or anything else for that matter) and not enough ports with 0 access to parts as a customer. Now we will have a true laptop that we devs can actually daily drive!
And all that at a price that can only be lower than intel and AMD could ever hope to achieve. Of course, I know the performance is not comparable right now. But it will come. In 10 years, I’m persuaded RISC-V will be as performant as x86 (but maybe not quite efficient as ARM though). And that, that’s the future I’ve been waiting for so long. Thanks for being a major part of making that happen!

Now let’s talk about the soldered RAM/eMMC. Ok, that’s against framework ethos, but this board is intended for devs, not users! Concerning the NVME, I think their choice make sense as stability is a utmost priority. You want to be 1200% sure that your app crashed not because of a cr*ppy data that was returned from the unreliable NVME connection caused by a PCIE splitter that tries its best to split a single PCIE line between wifi card and the NVME, but because there’s a real problem. Bugs like this only make devs lose time, a lot of time. And if the choice was between this and soldered storage well, i’m a dev not a user. Even if they only gave me 32gb i would be ok with that. Linux doesn’t even need more than 20Gb anyways as long as you don’t game/run AI on it. And for the RAM, I believe them when they say it’s a CPU support issue. RISC-V is (obviously) less stable than x86 right now so it makes sense that in order to support DDR4 they need traces custom made and tailored RAM chips for speeds/timings to be OK and not make your whole system just not boot or hard crash every 30 mins because your RAM stick is a little worse than others (silicon lottery) or built differently. Like I said: it’s for stability. Right now it’s certainly not ready for consumers. My uncle couldn’t do office work on his framework if I swapped his current mainboard for this one, it’s just not ready in terms of power, compatiblity, battery life and plenty of others requirements like windows-only proprietary software. And that’s ok.

I think they made an excellent choice by releasing RISC-V before ARM, because ARM compatibilty is mostly ready right now. Between ubuntu, debian, fedora, arch, gentoo, and even windows now, you can run pretty much anything, therefore a dev-only platform is not viable. They need to go directly to a consumer-ready product! And I think we will see one soon enough, maybe 2025-2026 if we are lucky.

Now what would I like to see in the future if I may suggest is first of all a lot of work in the drivers of this platform to not crash too much or introduce silent/random bugs while compiling or running apps and intensive workloads. I know that’s a lot to ask seeing the state of RISC-V right now and I’ll keep in mind it’s a dev product, but that would be the ideal goal. Next, release your first ARM product, something consumer-ready. Then, by 2030, you’ll have a pretty good RISC-V CPU to put in your laptops, and maybe towards 2035 we’ll see a RISC-V consumer release. What I wouldn’t advice though is a release of a RISC-V product not marketed toward devs but marketed for consumers while RISC-V is not ready, at least not before 2030 (unless we are suprised by the awesome RISC-V community!) and not without a heavy warning. Keep in mind that an average consumer will look for the cheapest option, which will be RISC-V because its at the low end in terms of perfs and can therefore only compete in the low end in terms of price. They need to be properly alerted before they order either any non-x86 mainboard or pre-assembled laptop, because they won’t know the technical differences and will assume it will just work, which could severely hurt framework’s reputation if done wrong. But I trust them to put something in red font or at least in bold in the first paragraph of every ARM/RISC-V product to warn non-technical audiences of the differences. Even the majority of relatively technical people I know don’t know about CPU architecture differences and will just see the cheapest option, so a heads-up is necessary even for ARM (where everything is pretty much OK in terms of compatiblity but just to warn users that they need special instructions to install their OS, etc).

TLDR: Framework made a very based choice by allowing devs to daily drive a solid RISC-V build before even releasing any ARM config (because ARM needs to be consumer-ready right now a devkit is pointless), and by opting for stability over customisability in a dev-only machine. Biggest framework win this year. Just, please put a bold statement in the first paragraph of the description of every ARM / RISC-V / other non-x86 product for the regular consumer that will just search for the cheapest option without reading anything (I saw the current one and its honestly something most people will skip past!). Big love to all the framework employees, devs and the community!

4 Likes